The Case for Mobility Modelling in Europe

There are many performance targets for the European aviation system. It is clear that performance-based frameworks are needed and utilised, especially when decision makers need to act on legislative packages or when operational managers need to make procedural changes or decisions regarding technology in aviation. This overarching model of operations proves that any costly decision must ultimately result in an increase in performance.

Different performance frameworks look into different aspects of the European aviation framework, with varying goals that are not necessarily compatible or align in the same direction. To illustrate, the FlightPath 2050 envisions an air transport system that improves safety levels but also guarantees a time-performance for the future passengers in Europe; up to four hours maximum door-to-door travel time for 90% of travellers. This number is not arbitrary, as it corresponds to the type of experience high level experts had envisioned for European passengers. However, punctuality and efficiency metrics are mostly flight centred. Passengers are rarely considered on time performance schemes and therefore very little is known about the actual door-to-door time performance from the passenger perspective. Decisions such as ‘when’ or ‘where’ to act in achieving this goal have proven to be more challenging than initially expected.

The European Commission Single European Sky Unit is working on the Reference Period 3, which delves deeper into the performance scheme for air navigation service and network functions. This performance framework is very detailed, but unfortunately does not yet include provisions for passenger time-performance. Due to the complexity of different, non-interchangeable metrics, the KPAs and goals of the different performance schemes do not necessarily match.

SESAR and CleanSky have detailed, technical performance goals. By looking into specific technology pieces or procedures, it is clear their technologies will surely improve the performance of many concrete operational elements (e.g. runway performance), however it is unclear how much those programmes will contribute to other performance frameworks. For instance, Europe may need additional funding to ensure better technology or have a different distribution of effort across the different technology research areas.

Mobility Modelling with Mercury
It is not realistic to believe a top-down Performance Framework can rule all initiatives. Each initiative has its complexities which justify executing independently, in occasions working with different groups of stakeholders or professionals. Nonetheless, a single vision for European mobility is needed.

Innaxis and the University of Westminster have been working for over 5 years on an integrated mobility model that provides a wide range of performance and mobility metrics, for use by a variety of airlines, network managers and policy makers. This integrated mobility model is called the Mercury Air Transport model (Mercury).

Mercury is capable of modelling passenger connectivities inside the European aviation system, along with a wide range of flight and passenger prioritisation scenarios. In order to cope with this monumental tasks, Mercury uses Soft Computing techniques and it runs in a cloud-based infrastructure. Mercury has been validated by airlines and captures airline decision-making and related costs by fusing a variety of data sources. Furthermore, Mercury works within the integration of different Performance Frameworks to produce the most accurate and useful metrics for each stakeholder.



Mobility, Modelling, Transport